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Estimation of Moving Information for Tracking of
Moving Objects
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Electronis • Information & Communications Engineering, Chosun University

Sang-Hwa Jeong
Mechanical Engineering, Chosun University

Tracking of moving objects within video streams is a complex and time-consuming process.
Large number of moving objects increases the time for computation of tracking the moving
objects. Because of large computations, there are real-time processing problems in tracking of
moving objects. Also, the change of environment causes errors in estimation of tracking
information. In this paper, we present a new method for tracking of moving objects using optical
flow motion analysis. Optical flow represents an important family of visual information
processing techniques in computer vision. Segmenting an optical flow field into coherent motion
groups and estimating each underlying motion are very challenging tasks when the optical flow
field is projected from a scene of several moving objects independently. The problem is further
complicated if the optical flow data are noisy and partially incorrect. Optical flow estimation
based on regulation method is an iterative method, which is very sensitive to the noisy data. So
we used the Combinatorial Hough Transform (CHT) and Voting Accumulation for finding the
optimal constraint lines. To decrease the operation time, we used logical operations. Optical
flow vectors of moving objects are extracted, and the moving information of objects is computed
from the extracted optical flow vectors. The simulation results on the noisy test images show that
the proposed method finds better flow vectors and more correctly estimates the moving informa­
tion of objects in the real time video streams.
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1. Introduction

Three-dimensional (3D) motion estimation is
of relevance to many problems related to dynamic
scene analysis such as 3D object reconstruction
(Prazdny, 1983; Adiv, 1989), object tracking
(Bun et al. 1989; Broida and Chellappa, 1989),
and robot navigation (Nelson and Aloimonos,
1989; Subbarao, 1990; M. C. Han, K. S. Hong, J.
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K. Kim, 1996). One way to estimate the 3D
motion is to evaluate its perspective projection on
the image plane. This is usually called "velocity
field", and represents the apparent velocity of the
image pixels from one frame to the next.

One of the most notable approaches to find
velocity field is based on the estimation of a
measure of the change of image brightness in the
frame sequence, commonly referred to as optical
flow. Optical flow represents an approximation of
the velocity field which is a purely geometric
concept. Verri and Poggio (1989), and Nagel
(1989) have analysed operating conditions for the
equality of optical flow and velocity field. In
many applications optical flow is a sufficient
approximation of the velocity field and can be
reasonably employed in its place.
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Different approaches for optical flow estima­
tion exhibit different behavior with respect to
discontinuities and for different types of motion,
depending on the techniques used. In the litera­
ture two approaches for optical flow estimation
can be identified: (I) regularization-based
approaches and (2) multiconstraint-based
approaches.

Regularization-based approaches (Horn and
Schunck, 1981; Nagel, 1983; Nagel and Enkel­
mann, 1989; Schunck, 1989) consider velocity
field estimation as an ill-posed problem. Solu­
tions are obtained by minimizing a function
where a smoothness constraint is appropriately
weighted to regularize the solution. Usually, these
methods lead to iterative solutions and the veloc­
ity is evaluated at every point of the image. Most
of these methods yield a "dense" optical flow
field, in the sense that the estimation process
assigns a vector to every pixel in the image, and
not only to the pixels of object boundaries.
Drawbacks of these approaches are related to the
fact that difficulties occur at the regions of object
occlusions. Further, the depth of propagation of
the field depends on the number of iterations used
and on the weighting factor of the regularizing.

Multiconstraint-based approaches (Cafforio
and Rocca, 1979; Campani and Verri, 1990; Nesi,
Delbimbo and Sanz, 1991) to optical flow estima­
tion are based on the principle that it is possible
to define a set of constraint equations for the
point under consideration. This set of equations is
usually solved by using numerical methods for the
inversion or pseudo-inversion of the coefficient
matrix, or by using least-squares techniques.
Traditional numerical methods, like the least
-squares technique, are averaging methods, and
are thus susceptible to errors in two important
cases, namely, that of occlusion and of noise. In
the case of occlusion, the two objects contribute
conflicting velocities. at the border between two
moving objects, and taking their average yields a
less satisfactory optical flow estimation. which
deviates from both. Noise also enhances the
damaging effect in the case where the solution is
found by averaging. The contribution to the solu­
tion from noise has the same weight as that from

the object, and with a significant presence of
noise, a considerable deviation from the actual
optical flow can occur.

Another drawback of these optical flow based
methods is that the detected motion boundary is
not precise because the motion is not homogene­
ous near the motion boundary. Furthermore, the
object contour is not determined when the motion
of the object is similar to that of its neighbor.
Therefore, several methods have been proposed
which use not only optical flow but also other
information such as color and edge (Thompson,
1980; Gemen, 1985; Black, 1992; Etoh, 1993;

Nagao, 1993;).

In this paper, a method based on the multicon­
straint-based approach is presented, which evalu­
ates optical flow using optical flow constraint
(OFC) equations in the neighborhood of each
pixel. The solution is derived with the help of
Combinatorial Hough Transform (CHT)
(Leavers, Ben-Tzvi and Sandler, 1989; Ben-Tzvi
and Sandler, 1990) and with the help of vote
accumulation, which avoids drawbacks associat­
ed with the least-squares method. Calculation of
many points along the constraint lines is also
avoided by taking into consideration the transfor­
med slope-intercept parameter domain. For
reducing the operating time, the logical operation
method for computing Ex, E; E, (brightness
gradient in the x, y and t directions respectively
between two input images) is used. We also
perform the extraction in the real moving area in
the image for reducing the operating time of the
CHT.

2. Extracting the Brightness
Derivatives

2.1 Detecting the moving area
Combinatorial Hough Transform (CHT)

requires a lot of computations. To reduce the
computations, the moving area is detected by
differentiating the two consecutive input images
as:

oi». y)=ABS[It+l(X, Y)-!t(x, y)] (I)

where! (t) is the first image at time t, I (t + 1) is
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Fig. 1 Median Filter
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Fig. 3 Illustration of three partial derivatives of
image brightness

Fig. 2 Detected moving area

the second image at time t + I and ABS [ ] means
the absolute value.

Median filter (Fig. 1). erosion and dilation
processing are used for removing the noise. Fig. 2
shows the detected moving area.

v

u

Fig. 4 Representation of a constraint line on the (u,

v) plane

2.2 Extracting the brightness derivatives
Assuming that the image brightness E (x (t), y

(t), t) is stationary with respect to time (i. e.
dEldt=O). the flow of its feature pattern can be
modeled by a sort of continuity equation.

(2)

where the abbreviation for partial derivatives of
the image brightness has been introduced, and u
and v correspond to dx/dt and dy] dt respective­
ly, and represent the components of velocity
vector V of the feature pattern along the x and y

directions on the image plane respectively (the
optical flow components). Eq. (2) is usually
called the "Optical Flow Constraint" (OFC),
and estimation methods based on OFC equation
are commonly referred to as gradient-based

methods.
Ex, s; s, are computed using Eq. (3).

1
Ex~iiEi+lJ,k - EiJ,k +Ei+lJ+1,k - EiJ+1,k

+EHIJ,k+l- EiJ,k+l +Ei+1J+1,k+l

- EiJ+l,k+l}

I
Ey~iiEHIJ,k - EiJ,k +EH1J+1,k - Ei+lJ,k

+Ei,j+l,k+l - EiJ,k+l +EH1J+l,k+l

- EHl,j,k+l}

I
E, ~iiEiJ,k+l - EiJ,k +Ei+l,j,k+l- Ei+1J,k

+Ei,j+l,k+l - EiJ+l,1t +Ei+l,j+l,It+l

- EHIJ+l,It} (3)

The derivatives of brightness are estimated
from the discrete set of image brightness measure­
ments available. It is important that the estimates

of Ex. E, and E, be consistent. That is, they
should all refer to the same point in the image at
the same time. While there are many formulae for
approximating differentiation, we use a matrix

which gives us an estimation of Ex, E; and E, at
one point of pixels formed by four-neighborhood
measurements. The relationship in space and time
between these measurements is shown in Fig. 3.
Each of the estimation is the average of four first
differences taken over adjacent measurements.

The OFC equation cannot provide a unique
solution by itself. In fact, the OFC can be regard-
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ed as the equation of a line in the (u, v) plane.

3. Extracting Velocity Vectors

m

3

(a)
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c
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1

3.2 Transform to the (p, 8) plane and vote
accumulation

Votes are cast using a Hough transform ver­
sion, namely the Combinatorial Hough Trans-

(b)

Fig. 6 Constraint line parameterization (a) con­
straint line with the estimated optical flow
vectorcomponents (u, v) in the (u, v) plane,
(b) corresponding best line in the parameter
plane

tion point in the (u, v) plane of a set of con­
straint lines is equivalent to the requirement of
collinearity of their corresponding points in the
parameter plane (See Fig. 6). The estimation of
optical flow at each pixel is thus reduced to
finding the best line that matches the pattern of
points corresponding to the constraint lines
(around each pixel) in the parameter plane. The
best line is the line on which the largest number
of points reside and not the line that gives the
minimum accumulative distance to the points.

In practice, we consider blocks of size 5 X 5,
with 2 pixel overlap.

(4)v=mu+c

Fig. 5 Algorithm for logical comparison

3.1 Transform to the (m, c) plane
A multiconstraint solution based on the OFC

followed by the vote accumulation method iden­
tifies the most likely solution as the point (u, v)

where most of the constraint lines lie in the
vicinity of each pixel intersect. By means of this
approach, the characteristics of each constraint
line are transformed from the (u, v) plane to the
slope-intercept plane (m, c), where each con­
straint line is represented by a point according to
Eq. (4). The requirement of a common intersec-

where m= - Ex/Ey is the slope and c= - EdE;
is the intercept. Any point along this line is a
possible solution for the optical flow estimation
problem.

In this paper, we used the logical comparison
method for improving the gradient operation
speed. The operation algorithm for logical com­
parison is outlined in Fig. 5.
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Fig. 8 Illustration of the computed complexity

Comparison of least-squares method and
vote accumulation method, (a) vote accumu­
lation method. (b) least-squares method
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Fig. 7 Comparison between (rn, c) plane and (p,

8) plane, (a) (m. c) plane (b) Transfor­
mation into (p, 8) plane

(8)

form. Each couple of points (mh Cl) and (m2'

C2) in the slope-intercept plane corresponding to
a couple of constraint lines, adds a vote to a
monodimensional accumulation histogram of the
best line e.

e=arctan( m2-ml
) (5)

C2-CI

Pi= m,.cos(emax) +cisin (emax) (6)

Therefore, according to the multiconstraint
approach on an N X N area, there are (N4

- N2) /
2 couples of constraint equations and solutions.
This could lead to an asymptotical complexity
equal to PN2(I X I : the size of the image). This
is simplified by considering only the combina­
tions of the constraint lines associated with the
pixels in the N X N area and the constraint line of
the center of the multi-point area.

Thus, (N2-1) pairs of equations and, hence,
N2 votes are obtained. The histogram in e is
inspected to find the most probable value, emax

(the value corresponding to the peak of the
histogram). By using that value, a second stage of
N2 votes is used to define another histogram for
the other line parameter.

We computed Pmax by the following procedure:

• Compute Pm<!41t.n
1 N2

Pmea1t=JVl~IPi

• Search P' within defined range in P set.

p'={iIPmean' a«. p,«: Ptrlean' /3 ; i = 1, "', N2}
(7)

where a is 0.4 (minimum factor) and !J is 1.5
(maximum factor) experimentally.

• Pmax is the mean of P' within the values
defined in the second process.

1 N(p')

Pmax= N(p'} ~ p';

where N(p'} is the size of the set p'.

Figure 9 shows the advantage of vote accumu­
lation method.
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Fig. 10 Diagram of the proposed algorithm

Table 1 Comparison of the operat ion time and

complexity

Algorithm Iteration Complexity
Operat ion

time

Horn &

Schunck
Yes ItF 61.87X It

Campani
No N2F 843.66

& Verri

Proposed
No N2V 286.96

method

I X I : the size of the image
I, X I, : the size of the moving region
N X N : the size of the neighborhood
It : the number of iterations

3.3 Computing the velocity vector
The best approximation of the best line is

defined by (Pmax, 8max) ' Therefore, the optical

flow at each pixel is directly derivable from these

line parameters.

3.4 Extracting the moving object
For extracting the moving area accurately, we

used the mask operation ,between the differential

image and optical flow . Then, the information of

the moving object computed in section 3.3 is

displayed in this area.

C=DI\. 0 (10)
D : differential-image region

o : optical flow region

I\. : mask operation (for extracting region)

The diagram of the proposed algorithm in this

paper is shown in Fig. 10.

Distance Direction

Real Value 17.22 9.5

Horn & 25.02 2.3Schunck

Campani 18.44 12.5& Verri

Proposed 16.27 10.61'method

(~ (b)

Fig. 11 Input Sequence, (a) First frame, (b) Sec­
ond frame

Table 2 Comparison of the moving information
value

(9)pmax
U =cot (8max), v

4. Experimental Results

For the simulation of the proposed algorithm, a

two-frame sequence (256X 256 gray-level) as

shown in Fig. 11, is used. There are several strong

edges in the background of the image in the

sequence. The image sequence is noisy which

causes errors in the computation of optical flow

vectors. The results of the proposed method are

compared with the method I (Horn and Schunck,

1981) and method II (Campani and Verri , 1990).

The three methods are compared in terms of

operation time and computational complexity.

The simulation results are shown in Table I.

Method I is the regularization based method

for finding the optical flow vectors. Method I
gives accurate results, but it is very slow due to its

iterative nature as compared to the other method.

For 1500 iterations, the proposed method is faster
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Fig. 12 Comparison of the extracted optical flow,
(a) Hom and Schunck's method, (b)
Campani and Verri, (c) Proposed method

Fig. 13 Direction of the moving object

than that of method I. The complexity of the pro­

posed method is also less compared to method I .
Method IT is one of the multi-point based

algorithm. But, method IT has also greater
computational complexity compared to the

proposed method. Also, method IT has the local
minimum problem at some part of the image.

5. Conclusion

In this paper, we discussed the problem of
tracking of moving objects in a video stream.
There are many methods for tracking of moving
objects in the literature, but we discussed the
popular technique of optical flow for detection of
moving objects. Optical flow represents an impor­
tant family of visual information processing tech­
niques in computer vision. Optical flow finds the
velocity vectors at each pixel in the entire video
scene. However, optical flow-based methods need
a lot of computations, and are sensitive to noise.
In this paper, we proposed a new method based
on CHT and on voting for improving the accu­
racy and reducing the computation time. We
compared the proposed method with some classi­
cal methods on the noisy test image sequence. The
simulation results show that the proposed method
improves the accuracy of finding the optical flow
vectors, and extracts the moving information of
objects more accurately . Also, the proposed
method is faster than the classical methods.



Estimation of Moving Information for Tracking of Moving Objects 307

Acknowledgment

This paper was supported by research funds

from the Factory Automation Research Center
for Parts of Vehicles (FACPOV) in Chosun
University, Kwangju, Korea.

References

Adiv, G., 1989, "Inherent Ambiguities in

Recovering 3-D Motion and Structure from a
Noisy Field," IEEE Trans. Pattern Analysis
Mach. Intell. 11 (5), pp. 477-489.

Ben-Tzvi, D. and Sandler, M., 1990, "A Com­

binatorial Hough Transform," Pattern Recogni­
tion, Lett. 11, pp. 167-l74.

Black, M. J., 1992, "Combining Intensity and
Motion for Incremental Segmentation and Track­

ing over Long Image Sequence," Proc. ECCV'92,
pp. 485-493.

Broida, T. J. and Chellappa, R., 1989, "Experi­
ments and TJniqueness Results on Object Struc­

ture and Kinematics from a Sequence of Monocu­
lar Images," Proc. IEEE Workshop on Visual
Motion, Irvine, California, U. S. A, pp. 21- 30.

Burt, P. J., et aI., 1989, "Object Tracking with a
Moving Camera," Proc. IEEE Workshop on
Visual Motion, Irvine, California, U. S. A., pp. 2
-12.

Cafforio, C. and Rocca, F., 1979, "Tracking

Moving Objects in Television Images," Signal
Process. I, pp. 133-140.

Campani, M. and Verri, A. 1990, "Computing
Optical Flow from an Overconstrained System of
Linear Algebraic Equations," Proc. 3rd IEEE
Int. Con! on Computer Vision, pp. 22-26.

Del Bimbo, A. and Nesi, A., 1993, "Real-Time

Optical Flow Estimation," in Proc. 1993 IEEE
Systems, Man and Cybernetics Conf., (Le Tou­
quet, France), pp. 17-20.

Etoh, M. et. aI., 1993, "Segmentation and 2D

Motion Estimate by Region Fragments," Proc.
4th Int. Con! Computer Vision, pp. 192-199.

Gemen, S. et, aI., 1985, "Stochastic Relaxation,
Gibbs Distribution, and Bayesian Restoration of

Images," IEEE Trans PAM/. 6(6), pp. 721-741.

Han, M. c., Hong, K. S. and Kim, J. K., 1996,
"The Position Measurement of a Body Using 2U

Vision Sensors," '96 Proceedings of the KSME
Spring Annual Meeting (A), pp. 270-275.

Horn, B. K. P. and Schunck, B. G., 1981,

"Determining Optical Flow," Artif. Intell. 17, pp.
185-203.

Leavers, V., Ben- Tzvi, D. and Sandler, M.,

1989, "A Dynamic Combinatorial Hough Trans­
form for Straight Lines and Circles," Proc. Alvey
Vision Con! Manchester, U. K.

Nagao, K. et. al., 1993, "Detecting Contours in

Image Sequences," IEICE Trans. Information
and System. E76-D(lO), pp. ll62-1l73.

Nagel, H. H., 1983, "Displacement Vectors

Derived from Second-Order Intensity Variations
in Image Sequences," Computer Vision Graphics
Image Process. 2l, pp. 85-117.

Nagel, H. H. 1989, "On a Constraint Equation
for the Estimation of Displacement Rates in
Image Sequences," IEEE Trans. Pattern Analy­
sis Mach. Intell. Il (l), pp. 13-30.

Nagel, H. H. and Enkelmann, W. 1984,
"Towards the Estimation of Displacement Vector

Fields by 'Oriented Smoothness' Constraints,"
Proc. 7th IEEE Int. Con! on Pattern Recogni­
tion, pp. 6-8.

Nelson, R. C. and Aloimonos, J., 1989, "Obsta­
cle Avoidance Using Field Divergence," IEEE
Trans. Pattern Analysis Mach. Intell. II (10) , pp.

1102-1106.
Nesi, P., Delbimbo, A. and Sanz, J. L., 1991,

"Multiconstraints-Based Optical Flow Estima­
tion and Segmentation," Int. Workshop on Com­
puter Architecture for Machine Perception, Paris,

pp. 419-426.
Prazdny, K., 1983, "On the Information in

Optical Flow," Computer Vision Graphics Image
Process. 23, pp. 239-259.

Schunck, B. G., 1989, "Image Flow Segmenta­
tion and Estimation by Constraints Line and

Clustering," IEEE Trans. Pattern Analysis
Mach. Intell. 11 (10), pp. 1010-1027.

Subbarao, M., 1990, "Bounds on Time-to­

Collision and Rotation Component from First­
Order Derivatives of Image Flow," Computer
Vision Graphics Image Process. 50, pp. 329-341.



308 Sung-Kwan Kang, Jong-An Park and Sang-Hwa Jeong

Thompson, W. B., 1980, "Combining Motion
and Contrast for Segmentation," IEEE Trans.
PAMI, 2(6), pp. 543-549.

Verri, A. and Poggio, T., 1989, "Motion Field

and Optical Flow: Qualitative Properties," IEEE
Trans. Pattern Analysis Mach. Intell. II (5), pp.
490-498.




